7 research outputs found

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Load frequency control for multi-area power systems : a new type-2 fuzzy approach based on Levenberg–Marquardt algorithm

    Get PDF
    In this study, a new fuzzy approach is proposed for load frequency control (LFC) of a multi-area power system. The main control system is constructed by use of interval type-2 fuzzy inference systems (IT2FIS) and fractional-order calculus. In designing the controller, there is no need for the system dynamics, therefore the system Jacobian is obtained by a multilayer perceptron neural network (MLP-NN). Uncertainties are modeled by IT2FIS, and for training fuzzy parameters, Levenberg Marquardt algorithm (LMA) is used, which is faster and more robust than gradient descent algorithm (GDA). The system stability is studied by Matignon’s stability method under time-varying disturbances. A comparison between the proposed controller with type-1 fuzzy controller on the New England 39-bus test system is also carried out. The simulations demonstrate the superiority of the designed controller

    IMC based Smith Predictor Design with PI+CI Structure: Control of Delayed MIMO Systems

    No full text
    In this study a novel structure for time-delay MIMO systems controller design is introduced. In this method decoupled Smith predictor (SP) controller is designed using Internal Model Control structure (IMC). In order to approximate decoupled system, step response model approximation is employed and simulated on MIMO multiple time-delay system. Moreover, to improve system performance from overshoot and rise time perspective, Smith predictor controller is combined with PI+CI structure. Furthermore, to increase system robustness, a low pass filter is designed. Afterwards, the proposed structure is applied to the model of a time-delay MIMO distillation tower system and obtained results are compared to those of a PID controller. Finally, performance of different design methods is evaluated using Integral error criterion (Integral Square Error criterion)

    IMC based Smith Predictor Design with PI+CI Structure: Control of Delayed MIMO Systems

    No full text
    In this study a novel structure for time-delay MIMO systems controller design is introduced. In this method decoupled Smith predictor (SP) controller is designed using Internal Model Control structure (IMC). In order to approximate decoupled system, step response model approximation is employed and simulated on MIMO multiple time-delay system. Moreover, to improve system performance from overshoot and rise time perspective, Smith predictor controller is combined with PI+CI structure. Furthermore, to increase system robustness, a low pass filter is designed. Afterwards, the proposed structure is applied to the model of a time-delay MIMO distillation tower system and obtained results are compared to those of a PID controller. Finally, performance of different design methods is evaluated using Integral error criterion (Integral Square Error criterion)

    Formation Control of Non-Holonomic Mobile Robots: Predictive Data-Driven Fuzzy Compensator

    No full text
    A key research topic in the field of robotics is the formation control of a group of robots in trajectory tracking problems. Using organized robots has many advantages over using them individually, such as efficient use of resources, increased reliability due to cooperation, and better resistance against defects. To achieve this, a controller is proposed that steers the leader robot and subsequent follower robots asymptotically to a reference trajectory. The basic controller is feedback linearization. To ensure stability against perturbations, a compensator based on type-3 fuzzy logic systems (T3-FLSs) and a data-driven control strategy is designed. The approach involves employing a finite number of open-loop data and using the model-based predictive controller (MPC) approach to acquire sufficient criteria for stability. An infinite-horizon function is minimized online, which allows the data-based control policy to be considered the optimal control method. The gains of the constrained data-based control signal are computed at each time step to enhance accuracy. Applying the data-based state feedback controller to the system yields positive and stable state trajectories with appropriate transient responses. The suggested data-driven compensator is guaranteed to handle constraints. A practical example is simulated to evaluate the proposed strategy

    Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems

    No full text
    The objective of this study is minimizing the frequency deviation due to the load variations and fluctuations of renewable energy resources. In this paper, a new type-2 fuzzy control (T2FLC) approach is presented for load frequency control (LFC) in power systems with multi-areas, demand response (DR), battery energy storage system (BESS), and wind farms. BESS is used to reduce the frequency deviations caused by wind energy, and DR is utilized to increase network stability due to fast load changes. The suggested T2FLC is online tuned based on the extended Kalman filter to improve the LFC accuracy in coordination of DR, BESS, and wind farms. The system dynamics are unknown, and the system Jacobian is extracted by online modeling with a simple multilayer perceptron neural network (MLP-NN). The designed LFC is evaluated through simulating on 10-machine New England 39-bus test system (NETS-39b) in four scenarios. Simulation results verifies the desired performance, indicating its superiority compared to a classical PI controllers, and type-1 fuzzy logic controllers (FLCs). The mean of improvement percentage is about 20%.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore